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Synopsis 

The elongational flow behavior of dilute polymer solutions is of great current interest because it 
has been suggested that elongational viscosity effects may be involved in a number of phenomena 
such as turbulent drag reduction and flow cavitation suppression. Unfortunately, recent experi- 
ments, in trying to investigate elongational effects, have produced widely varying resuits. In this 
paper, an attempt is made to analyze one of the factors that  contribute to this diversity. By using 
a generalized convected Maxwell model, it is shown that in a transient elongational flow, both 
stretching rate and flow time must reach the proper values before high stress levels can be observed. 
This is true for both accelerating flows such as through a cone or wedge and decelerating flows such 
as in a free jet. Since most previous experiments have not considered flow time, consistent results 
cannot be expected. Consequently, the proper control of all flow conditions is an essential re- 
quirement when trying to observe high stress levels. The results presented here provide valuable 
guidelines in this regard. 

INTRODUCTION 

The importance of polymer response to elongational flows is well known in 
certain aspects of polymer processing such as extrusion. In recent years, the 
behavior of solutions in elongational flow has also stimulated a great deal of in- 
terest because it has been associated with a number of important phenomena 
observed in dilute polymer solutions. Recent experiments have revealed many 
such effects. For example, the addition of small amounts of certain high mo- 
lecular weight polymers to a solvent has been shown to reduce the frictional drag 
associated with turbulent pipe fl0ws.l Likewise, polymeric additives can affect 
the energy transport process and result in a reduction of the turbulent heat 
transfer coefficient.2 Even in laminar flows, the addition of polymers can alter 
the streamline patterns around  object^.^ Other experiments have shown that 
the stress effect of macromolecules can suppress flow-generated cavitation by 
as much as 60% when compared with that in water.4 Similar inhibition effects 
have been reported in jet cavitation and venturi cavitation as well.5 Finally, the 
characteristics for the generation of flow-induced instabilities a t  a compliant 
coating/fluid i n t e r f a ~ e ~ , ~  and for the breakup of fluid  jet^^,^ are altered by the 
addition of polymer. It is clear, therefore, that such additives can affect flow 
behavior in many ways. 
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Despite the great diversity of these effects, recent work has revealed a definite 
pattern involving some unique characteristics common to all. This has led to 
the speculation that an analysis of these similarities may eventually produce a 
unified theory to satisfactorily explain many aspects of the phenomena. Perhaps 
the most striking similarity is that only very small amounts of polymer are needed 
to produce substantial alterations in flow behavior. For example, concentrations 
as low as a few parts per million by weight can give large reductions in turbulent 
drag and cavitati0n.l~~ The second important similarity concerns the nature 
of the deformation patterns. An analysis of the flows involved in these phe- 
nomena indicates that deformations of an axisymmetric stretching or com- 
pression are present. In the cases of jet or venturi flows" and flows approaching 
the stagnation point of a blunt-nosed the existence of such deformation 
fields is quite evident. In the cases of wall turbulence such as that in pipe flows, 
recent flow visualization studieslOJ have indicated that turbulence generation 
is closely related to the turbulent bursting process, which was found to contain 
fluid motions of a stretching nature. In fact, experimental observationsI2 have 
shown that polymeric additives suppress such activities in the wall region of the 
turbulent boundary layer. 

The importance of this stretching or elongational-type motion was first rec- 
ognized by Peterlin,13 Metzner,14 and Lumley15J6 who noted that theoretical 
models for polymer rheology predicted that the addition of very small amounts 
of polymer to a solvent would product large increases in the resistance to 
steady-state elongational flow. Several more recent theoretical analyses17-19 
have suggested that this is also true for transient flows. For example, Lumley20 
has tried to model the behavior of dilute polymer solutions in turbulent flow. 
His studies suggest that under the proper conditions, the elongational motions 
present in the flow can produce large extensions of the polymer molecules. As 
a result of these studies and other similar work, it has been proposed that a 
mechanism involving elongational viscosity might explain many of the anomalous 
effects observed in dilute polymer solutions. In an effort to clarify this point, 
a number of workers have studied converging flows in an attempt to experi- 
mentally verify the theoretical predictions regarding the behavior of dilute 
polymer solutions in elongational flow. Unfortunately, these studies have 
produced widely varied results. In some cases, the elongational viscosity was 
found to be very large21,22 and the polymer molecules highly extended.23 In other 
experiments, neither of these effects was o b ~ e r v e d . ~ ~ . ~ ~  Consequently, the ob- 
jective in this paper is to analyze one of the difficulties involved in studies of this 
type and to indicate how the experimental conditions can be adjusted to optimize 
the chances for obtaining positive results. 

MODEL AND ELONGATIONAL VISCOSITY 

Elaborate molecular theories, such as that of Rouse,26 have been developed 
to model the motions of isolated polymer molecules. By employing such models, 
authors like Peterlin27 have studied the dependence of polymer intrinsic viscosity 
and other properties on the hydrodynamic flow fields. These papers indicate 
that in a steady flow field with a longitudinal gradient, the extension of the 
polymer molecules is much greater than that obtained with a transverse gradient. 
The stress levels required to maintain this extension are very high even a t  low 
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polymer concentrations. It was later pointed out, however, that, although the 
steady-state stress levels may be large, the transient behavior can be quite dif- 
ferent.28 Recent investigations have, therefore, proposed constitutive equations 
which are more adaptable to the treatment of transient flows.17-19 Such a model 
will be used for the discussion presented here. In this continuum model,lg which 
is based on the bead-spring molecular theories of Rouse and Zimm, the total 
stress u is related to the strain rate tensor d by 

where p is the hydrostatic pressure, ts is the solvent viscosity, and dn)  is the nth 
mode stress deviator satisfying 

In eq. (2), the convected material derivatives are used;29 A, is the nth relaxation 
time and tn is the contribution of the nth mode to zero-shear solution viscosity. 
Values for these parameters can be obtained from the appropriate molecular 
theory such as that of R o ~ s e . ' ~ . ~ ~  

For an elongational deformation with constant stretching rate r, the strain 
tensor d is 

2r o 
d =  0 -r [ 0 0 -J] (3) 

The elongational stress effect is presented in terms of a parameter I ,  called the 
reduced elongational viscosity, 

- c11 - c22 
7 7 =  

77s 
(4) 

For the model used here, 

where c is the polymer concentration, R is the gas constant, T is the absolute 
temperature, M ,  is the molecular weight, and t is the physical flow time. In this 
equation, it is clear that as polymer concentration c approaches zero, the classical 
Trouton ratio for Newtonian fluids, IN = 3, is recovered.30 For polymer solutions 
in steady-state flow ( t  - a), the reduced elongational viscosity approaches 

1 - , = 3 ( 1 + -  cRT rn An c 
M,vS 1 (1 - 2Anr ) ( l  + Anr) 

This equation shows that 11 increases rapidly with increasing stretching rate r, 
and, as expected, it approaches infinity as (1 - 2Xlr) - 0. In the case of com- 
pression (r < 0), similar behavior is found, except that the singularity for infinite 
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- 
7 is shifted to (1 + Xlr) - 0. Consequently, this model gives the expected results 
for steady-state motion. 

What is more interesting, however, is that the behavior for transient flows can 
also be predicted from eq. (5). The importance of this can best be illustrated 
by considering a specific example.  calculation^^^ based on eq. (5) were carried 
out for a 100-ppm solution of Polyox-WSR-301 (Union Carbide, M ,  = 2.4 X lo6, 
7 = 1.21 CP). 

The results are presented in Figure 1, where curves representing contours of 
constant i j  a t  ten different values ranging from 3.1 to lo4 are plotted in a phase 
plane of normalized flow time ( t l X 1 )  and normalized stretching rate ( X l r ) .  The 
upper portion of Figure 1 shows the results for stretching (r > 0), whereas the 
lower portion gives the curves for compression (r < 0). It can be seen from this 
figure that once the elongational flow is established, it must be maintained for 
a definite period of time before a given value of i j  is obtained; that is, a finite time 
is required for the polymer molecules to respond to the flow. For small values 
of i j ,  those close to the Trouton ratio of 3.0, the necessary flow time can be reached 
even when r is very small. For example, i j  will reach or exceed 3.1 regardless of 
the stretching rate at  a flow time of approximately t/X1 = 0.022. It is also in- 
teresting to note from Figure 1 that the i j  contours exhibit a maximum in t .  
Consider, for instance, the case of i j  = 3.4; there is a maximum in flow time (t/Al 
= 0.7) at  Xlr = -1.0. This type of behavior becomes increasingly important as 
higher and higher values of 77 are considered, since the maximum becomes more 
pronounced and eventually approaches infinity. This can be seen in Figure 1 
for i j  = 3.624 where the contour “breaks” into upper and lower branches. 

What this suggests is that experiments can easily measure values of i j  up to 
about 3.6. This value, however, represents only a slight increase over the 
Newtonian value of 3.0, and thus it would be difficult to accurately detect this 
difference with most experimental techniques. It is clear, therefore, that only 
experiments which produce very large gradients (either positive or negative) 
provide any real hope for a critical evaluation of the theoretical predictions for 
7. Moreover, Figure 1 indicates that this gradient must be maintained for a 
minimum length of time. Consider, for example, a stretching rate of 1000 sec-l 
imposed on the solution shown in Figure 1. Since A1 = sec, 11 reaches lo4 
when t is sec. Consequently, only measurements made after this time pe- 
riod will yield i j  2 lo4. In order to reduce the value of t to 4 X sec, it is 
necessary to use I‘ = 2000 sec-’. There is, therefore, a tradeoff between 
stretching rate and flow time. To illustrate the difficulties that arise from this 
situation, some general flow geometries will be considered. 

- 

ACCELERATING FLOWS (r > 0) 

An easy way to generate an accelerating flow is to drive fluid through a nozzle. 
Consider the ideal case of a converging flow along the x axis as shown in Figure 
2. Simple one-dimensional analysis assumes that the velocity component in the 
positive x direction is independent of y and z .  If the flow rate Q is constant and 
A ( x )  is the cross-sectional area, the x component of the velocity is 

xo I x 
V ( X )  = Q/A(x) ,  xo I x I 0 (I: O I X  
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I 2 c 

Fig. 1. Contours of constant i j  plotted in a phase plane of normalized stretching rate X l r  and 
normalized flow time (tlhl). Limiting flow conditions obtainable in both accelerating and decel- 
erating flows are given as straight dashed lines. 

The stretching rate is 
r=-=-- dV Q d A  

dx A 2 d x  
and the flow time is 
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Fig. 2. Converging flow through a nozzle. 

Now, the tradeoff between these two parameters, t and r, may be analyzed for 
two practical laboratory designs: 

For a circular cone with radius r ( x )  = b - cx, the cross-sectional area is 
A ( x )  = r [ r ( x ) I 2 .  The stretching rate may be calculated according to eq. (7), 

A. 

which is an increasing function of x .  If the stretching rate reaches a value r = 
rc at x = x c ,  then the total flow time where > rc (i.e., x, I x 5 0) is 

This, then, is the time available for experimental measurements of any increase 
in 5. Since t ,  decreases with increasing b,  it has an upper bound of 

2 t =-  
3rc 

B. Similarly, for a linear wedge with unit depth (z = 1) and a height of y ( x )  
= b - c x ,  the stretching rate is 

Qc r ( x )  = 
2(b  - C X ) ~  

The total flow time where r 2 rc is 

which is limited to values less than 

1 t ,  = - 
2 r c  

Both of these limiting conditions, eqs. (9) and (lo), are shown in Figure 1 as 
straight dashed lines. Consequently, any laboratory setup which uses a cone- 
or wedge-shaped flow field can generate only r - t combinations to the left of 
these straight lines which represent the upper limits on the flow conditions. 
While it is true that the convected Maxwell model gives only an approximate 
description for polymer solution behavior, the results shown in Figure 1 clearly 
indicate that the necessity to obtain minimum values for both r and t represents 
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a severe limitation. This limitation is an important factor for both cone and 
wedge flows. 

To illustrate this point, a further example will be considered-flow through 
a two-dimensional hyperbolic wedge. If the cross-sectional area varies as A ( x )  
= 2b / (cx  + 1) with unit depth, the nozzle exit ( x  = 0) has the area A(0)  = 2b.  
The stretching rate is, therefore, 

r ( x )  = Qc/2b = constant 
and the flow time is 

2b 1 
Qc c x +  1 

t = - In [ -1 
For > r,, it can be shown that 

t,r, = In [ -1 1 
cx, + 1 

Equation (11) represents a family of straight lines having a negative slope of unity 
in a log-log plot of the phase plane (J?,t). The value of the parameter cx,, 
therefore, determines the level of i j  that can be reached. Once this parameter 
is determined, however, it prescribes the shape and length of the hyperbolic 
nozzle which will give the maximum value of I. The equations indicate that the 
cross-sectional area of the wedge must decrease by a factor of (cx, + 1) in a dis- 
tance of x,. If typical values of b or the exit cross section are selected, a simple 
calculation shows that the major limitation is one of three factors: the extremely 
short physical length of the nozzle, the small dimensions of the exit, or the 
enormous flow rates involved. Consequently, although wedge-shaped flows can 
readily achieve the combinations of r and t required to obtain large values of 
q,  it  is still necessary to carefully consider the limitations imposed by physical 
dimensions when designing the experiment. 

- 

DECELERATING FLOWS (r < 0) 

Similar considerations may be given to decelerating flows (F < 0), where the 
fluid elements experience compressional forces in the flow direction. A free jet 
is chosen for this discussion, since the flow leaving an orifice to form the jet ex- 
hibits a decaying velocity field. The fluid elements start from a high velocity 
region, the momentum is transformed into a pressure head and eventually the 
flow is brought to rest by fluid friction. For a two-dimensional turbulent jet of 
a Newtonian fluid, it has been calculated31 that the velocity in the positive x 
direction is 

V ( x )  = Kx-l12 

where K represents a combination of flow constants. Consequently, the longi- 
tudinal gradient is 

The flow time over the region (l? < r,) is 

2 - (x ,  3/2- x03/2) < - x,3/2 
t ,  = J-:': 3K 
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and a limiting condition is derived as 

Similarly, for a circular jet, 

which leads to a limiting condition 

Both eqs. (12) and (13) are derived using the axial velocity distributions of 
Newtonian jets. The detail distribution in the non-Newtonian case of polymer 
solutions is not known. Experimental observations, however,. seem to indicate 
that a certain degree of jet swelling is p r e ~ e n t . ~  In that case some of the mo- 
mentum carried by the jet is expelled to the transversed directions and the jet 
becomes thicker and shorter than the corresponding Newtonian jet. I t  may be 
expected, therefore, that the longitudinal gradient is not greatly affected, but 
the flow time is considerably shortened. This means that eqs. (12) and (13) 
represent upper bounds and are perhaps conservative estimates for the case of 
polymer solutions. Both these conditions are plotted in Figure 1 to show that 
the flow conditions available for measurements are limited to the left portion 
of the phase plane, where only low ?values can be observed. This result is similar 
to what was found for accelerating flows, and thus significant increases in i j  can 
be obtained only when large negative values of r are coupled with sufficiently 
long flow times. Here again, although the model represents only an approximate 
description for solution behavior, the results indicate that the proper combination 
of r and t is difficult to obtain experimentally. Thus, careful design of the ap- 
paratus is essential in experiments of this type. 

CONCLUSIONS 

The recent recognition of the importance of elongational viscosity i j ,  both for 
its own sake and for its role in other phenomena, has inspired a number of at- 
tempts to experimentally measure ij for dilute polymer solutions. In some of 
these  experiment^,^^.^^ the extension of the polymer molecules was found to be 
unexpectedly small and the values of 7 were very close to the Newtonian value 
of 3.0. In other ~ a s e s , ~ l - ~ ~  large extensions were obtained and very high values 
of i j  were observed. Even in the latter cases, however, the dependence of ij on 
the stretching rate r and polymer concentration were not always in agreement 
with theoretical predi~tions.*~-l~ The analysis presented here suggests that an 
important shortcoming in these experiments is the lack of control on flow time 
t .  Even a very simple equation such as the convected Maxwell model indicates 
that the present experiments are in a range where the effects of flow time can 
be very important. It is concluded, therefore, that differences in t are a major 
reason for the wide variety of results that have been obtained in what appeared 
to be very similar experiments. 

Two other factors may also contribute to the diversity of results. First, en- 
trance and exit effects are not usually considered in these experiments, and yet 
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they may have significant implications. Second, nonlinear effects such as the 
conformation instability recently proposed by P e t e r l i ~ ~ ~ ~  could affect the results. 
The instability effects, for example, would reduce the magnitudes of the flow 
times and stretching rates required to obtain a given value of t .  It is likely that 
these nonlinear effects are vital to the acquisition of large elongational viscosities. 
Despite these complications, however, it is very important to design the exper- 
imental conditions so that the optimum combination of flow time and stretching 
rate can be obtained. It is hoped that the results presented here will provide 
valuable guidelines in this regard. 
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